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Abstract

We study the resolution of sudokus and generalized sudokus using Groebner basis. Let

x1, . . . , x81 the 81 squares which form the sudoku, arranged from left to right and from

top to bottom. Its solution will be (a1, . . . , a81), where ai is the number in the square

associated to the variable xi .

Let S be a sudoku with preassigned data {ci }i∈L , for L ⊂ {1, . . . ,81}. All the necessary
information to solve the sudoku is contained in the algebraic set V(I+< {xi − ci }i∈L >).
We shall use Groebner basis to find a solution and give a SAGE code for that purpose.
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1. INTRODUCTION

A sudoku puzzle is a 9×9 grid divided into nine 3×3 boxes where there are numbers be-
tween 1 and 9 in some of the squares in the grid. To solve the puzzle we have to find the remain-

ing numbers in such a way that every row and every column only contain the digits 1 to 9 and

also every 3×3 box only contains those digits, without repetitions.The puzzle derives its name
from the japanese words Su, which means number and Doku, which means solitary. This puzzle

was popular in Japan since 1986 and it was in 2005 that it became internationally known. This

mathematical game had it origin in New York at the end of 1970 where it was known as ‘Number

Place’. It was published in a magazine called: “Math Puzzles and Logic Problems”.

A sudoku is a particular case of what is called a Euler squarewhich is an n×n grid such that
each row and column of this grid must be filled with the n distinct numbers without repetitions.
Amagic square is a 3×3 grid such that the sum of every row, column and diagonal equals

15. One can discuss themaximumnumber ofmagic squares that can appear in a unique solution

sudoku; for a discussion on this topic see [5].

The resolution of the sudoku can be seen as a problem of coloring the vertices of a plane

graphwith 81 vertices such that two of them are adjacent if they belong to the same row, column

or 3×3 block. If we assign a different color to each of the 9 digits, vertices with the same color
cannot be adjacent whichmeans that a digit cannot be twice in each row or each column or each

3×3 block.
Let x1, . . . , x81 the 81 squares which form the sudoku, arranged from left to right

and from top to bottom. Its solution will be (a1, . . . , a81), where ai is the number in

thesquare associated to the variable xi . Let S be a sudoku with preassigned data {ci }i∈L ,
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for L ⊂ {1, . . . ,81}. All the necessary information to solve the sudoku is contained in the algebraic
set V(I+ < {xi − ci }i∈L >). We also consider generalized sudokus. We shall use Groebner
basis to find a solution. Some of the results are based on the Masters’ Thesis of A. Delgado

Latournerie [1].

The minimum number of preassigned data ci for a unique solution sudoku is 17. This re-

sult was proven by McGuire-Tugemann-Civario [3] using computer software. For an interesting

reading on the subject, see [4].

The rate of difficulty of a sudoku is ranked using stars. One-star sudokus are very easy to

solve while a 5-star sudoku is very hard to solve. There is a famous sudoku, created by the

Finnish mathematician Arto Inkala in 2012, whose difficulty is ranked with 11 stars and it is

called Everest sudoku. We are not going to discuss here the definition of difficulty for a sudoku.

First we introduce some basic concepts on Algebraic Geometry and on Groebner basis. In 3
we solve sudokus using Groebner basis. In 4we give SAGE codes for its resolution. In 5, 6 and 7
we study generalizations of sudoku puzzles.

2. BASIC CONCEPTS

Definition 1. Let R be a commutative ring. Let I ⊂ R be an ideal of R.

• Let I ,R. I is a prime ideal of R ı̂f whenever ab ∈ I , either a ∈ I or b ∈ I .
• Let J be an ideal of R such that I ⊂ J . I is amaximal ideal if I = J or J = R.
• The radical of I is the ideal pI = {a ∈ R : an ∈ I , f or some n ∈N}.
• I is a radical ideal if I = p

I .

Definition 2. Let k[x1, . . . , xn] be a polynomial ring with coefficients in the field k. Let Ak
n
denote

the affine space of dimension n over k. For J ⊂ k[x1, . . . , xn] we define

V(J ) = {P ∈Ak
n : f (P ) = 0,∀ f ∈ J }.

V(J ) is called affine algebraic set.
Definition 3. Let S ⊂Ak

n .We define

I(S) = { f ∈ k[x1, . . . , xn] : f (P ) = 0,∀P ∈ S}.

Properties
• V(0) =Ak

n
, V(k[x1, . . . , xn]) =;.

• I(;) = k[x1, . . . , xn], I(Ak
n) = 0.

• For J1 ⊂ J2, V(J2) ⊂V(J1).
• For S1 ⊂ S2, I(S2) ⊂ I(S1).
• Let {S j }, j ∈ J , be a collection of subsets of Ak

n .
∑

j∈J I(S j ) = I(∩ j∈J S j ).
• Let {Ji }, i ∈ I , be a collection of subsets of k[x1, . . . , xn]. ∩i∈IV(Ji ) =V(

∑
i∈I Ji ).

Definition 4. We define the Zariski topology in Ak
n
the topology whose closed sets are affine

algebraic sets.

Definition 5. An affine algebraic set S ⊂Ak
n
is irreducible if, whenever S = S1∪S2, for Si ⊂Ak

n ,
1 ≤ i ≤ 2, S = S1 or S = S2. An irreducible affine algebraic set is called an algebraic variety.
Theorem 6. Hilbert’s Nullstellensatz Let k be an algebraically closed field. Let A be an ideal in
k[x1, . . . , xn]. I(V(A)) = p

A.
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Proof. See [2; Th. 13A]. �

Proposition 7. Let k be an algebraically closed field. There is a one-to-one correspondence be-
tween the ideals of k[x1, . . . , xn] and the sets of Ak

n
such that radical ideals of k[x1, . . . , xn] cor-

respond to affine algebraic sets; the prime ideals of k[x1, . . . , xn] correspond to algebraic varieties
and the maximal ideals of k[x1, . . . , xn] correspond to the points of Ak

n .

Proof. See [2; 1.4, 1.4.4]. �

Proposition 8. Let I ⊂ k[x1, . . . , xn] be an ideal such that V(I ) is finite. Then,

• (a) |V(I )| ≤ dimk ( k[x1,...,xn ]
I ),

• (b) Let k be an algebraically closed field. If I is a radical ideal, |V(I )| = dimk ( k[x1,...,xn ]
I ); that

is, the number of points of |V(I )|, counted with its multiplicity, is exactly dimk ( k[x1,...,xn ]
I ).

Proof. See [1; Prop. 5]. �

Definition 9. Amonomial in the variables x1, . . . , xn is a product of the form xα = x1
α1 , . . . , xn

αn ,
with α = (α1, . . . ,αn) ∈ Z≥0

n . An ideal I ⊂ k[x1, . . . , xn] is amonomial ideal if it admits a system
of generators which are monomials.

Definition 10. Let f = ∑
α aαxα a nonzero polynomial in k[x1, . . . , xn]. Let > be a monomial or-

dering.

• Themultidegree of f is multideg( f ) =max{α ∈Z≥0
n : aα , 0}.

• The leading coefficient of f is LC ( f ) = amultideg( f ).
• The leading monomial of f is LM( f ) = xmultideg( f )

with coefficient 1.

• The leading term of f is LT ( f ) = amultideg( f )xmultideg( f )

Definition 11. Let I ⊂ k[x1, . . . , xn] be a nonzero ideal. LT (I ) denotes the set of the leading terms
of the elements of I .

Definition 12. Let us fix a monomial ordering. A finite subset G = {g1, . . . , g t } of an ideal I ⊂
k[x1, . . . , xn] is a Groebner basis if < LT (g1), . . . ,LT (g t ) >=< LT (I ) >,where LT denotes the lead-
ing term as defined in Definition 10.

Definition 13. Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) ∈ Z≥0
n . We say that α >lex β and, thus,

that xα >lex xβ, if the first nonzero term of the vector α−β is posittive.
Definition 14. A Groebner basis G is reduced, for a polynomial ideal I , if

• LC ( f ) = 1, ∀ f ∈G .
• For every f ∈G , no monomial of f is in < LT (G − { f }) > .

Lemma 15. Letm, n ∈N, ai j ∈N. For each j , 1 ≤ j ≤ m, let {xi j −ai j }n
i=1, be a reduced Groebner

basis of the ideal I j ⊂ k[{xi j }n
i=1]. Then ∪m

j=1({xi j −ai j }n
i=1), ai j ∈ N, 1 ≤ i ≤ n, 1 ≤ j ≤ m, is a

reduced Groebner basis of the ideal
∑m

j=1 I j ⊂ k[{{xi j }n
i=1}m

j=1
].

Proof. Letm, n ∈N, ai j ∈N. By hypothesis, for each j , 1 ≤ j ≤ m, let {xi j −ai j }n
i=1, ai j ∈N, be a

reduced Groebner basis of the ideal I j ; thus it satisfies the conditions of Definition 14. Since all
the monomials are linear, ∪m

j=1({xi j −ai j }n
i=1), 1 ≤ i ≤ n, 1 ≤ j ≤ m, is a reduced Groebner basis

of the ideal
∑m

j=1 I j ⊂ k[{{xi j }n
i=1}m

j=1
]. �
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Example 16. See [1; Ej. 12]. Let k =C.
Let I =< x2 + y + z −1, x + y2 + z −1, x + y + z2 −1 > .
A Groebner basis for I with respect to the lexicographical order can be calculated using the

mathematical software SAGE using the command .g r obner−basi s()

R. < x, y, z >= Pol ynomi al Ri ng (CC ,3,or der =′ l ex ′)

I = i deal (x2 + y + z −1, x + y2 + z −1, x + y + z2 −1)

I .g r obner−basi s()

We get

{z2 + y +x −1, y2 − y − z2 + z,2y z2 + z4 − z2,

z6−4z4+4z3−z2} (1)

If we just want a Groebner basis obtained from the Buchberger we should use

I .g r obner−basi s(′toy : buchber g er ′)

Thus, we obtain

{x2 + y + z −1, x + y2 + z −1, x + y + z2 −1, y2 − y − z2 + z,

−y z4 − y z2 −2z4 +2z3,−2y z2 − z4 + z2, z6 −4z4 +4z3 − z2} (2)

(1) and (2) generate the same ideal I .

Definition 17. Let f , g ∈ k[x1, . . . , xn] be two nonzero polynomials. Let multideg( f ) = α,
multideg(g ) =β. Let γi =max(αi ,βi ), 1 ≤ i ≤ n.

• The monomial xγ is the least common multiple of LM( f ) and LM(g ).
• The S-polynomial of f and g is

S( f , g ) = xγ

LT ( f )
f − xγ

LT (g )
g .

Proposition 18. Let I ⊂ k[x1, . . . , xn] be a nonzero ideal. There exists a Groebner basis of I with
respect to every monomial order. Moreover, any Groebner basis of I is a system of generators of I .

Proof. See [1; Cor. 2]. �

3. RESOLUTION OF SUDOKUS USING GROEBNER BASIS

Let us consider the sudoku grid
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Let us denote by x1, . . . , x81 the 81 squares which form the sudoku, arranged from left to right

and from top to bottom. Its solution will be (a1, . . . , a81), where ai is the number in the square

associated to the variable xi . Let us consider the polynomial ring C[x1, . . . , x81].

Definition 19. • (a) For 1 ≤ i ≤ 81, let Fi (xi ) =∏9
k=1(xi −k).

• (b) For 1 ≤ i < j ≤ 81, let

Gi j (xi , x j ) = Fi (xi )−F j (x j )

xi −x j
∈Q[xi , x j ], with i , j .

Remark 20. Note that Fi (xi )−F j (x j ) is 0 inV(xi−x j ); thus (xi−x j ) is a factor of Fi (xi )−F j (x j ) for
i , j .MoreoverGi j (xi , x j ) is not divisible by (xi −x j ), since, for xi = x j , Gi j (xi , xi ) = F ′

i (xi )which
is not 0 since Fi is not constant. Also, if ai , a j are such thatGi j (ai , a j ) = 0 and Fi (ai ) = 0 = F j (a j )
we would have that ai , a j , for, otherwise, Gi j (ai , ai ) = F ′

i (ai ) , 0 because there would be a
summand of F ′

i which would not be 0 in ai ∈ {1, . . . ,9}.

Notation 21. Let E = {(i , j ) ∈ T }

(i , j ) ∈ T when 1 ≤ i < j ≤ 81 and the ith and jth cells belong to the same row, column or 3×3
block.

We consider the ideal I generated by the polynomials Fi , 1 ≤ i ≤ 81, and Gi j , (i , j ) ∈ E . Let S
be a sudoku with preassigned data {ci }i∈L , for L ⊂ {1, . . . ,81}.

Remark 22. The ideal I+< {xi − ci }i∈L > is the ideal generated by I∪< {xi − ci }i∈L > and

V(I+< {xi − ci }i∈L >) =V(I )∩V(< {xi − ci }i∈L >).

Proposition 23. The following statements are equivalent:
• (1) Let L ⊂ {1, . . . ,81}.We have a = (a1, . . . , a81) ∈V(I+< {xi − ci }i∈L >, where ci are certain

constants.

• (2) ai ∈ {1, . . . ,9}, for i ∈ {1, . . . ,81}, with ai , a j , for (i , j ) ∈ E , and ai = ci , for all i ∈ L.

Proof. See [1; Prop. 4].

(1) =⇒ (2) Let a ∈V(I+ < {xi − ci }i∈L >). Then Fi (ai ) = 0, ∀i ∈ {1, . . . ,81} and ai = c j , for all
i ∈ L. Let us prove that ai , a j , for (i , j ) ∈ E . Let us assume that there is a pair (k, l ) ∈ E such that
ak = b = al . Since Fk (xk ) = Fl (xl )+ (xk − xl )Gkl (xk , xl ), we obtain Fk (xk ) = (xk −b)Gkl (xk ,b). If
Gkl (b,b) = 0,we would obtain that b is a zero of Fk of multiplicity at least 2 which is impossible.

(2) =⇒ (1) If for all i ∈ {1, . . . ,81} ai satisfies the first condition of (2) and also ai = ci , for all
i ∈ L, then every Fi , i ∈ {1, . . . ,81}, would be 0 on them and xi − ci = 0, for all i ∈ L. If also ai ,
i ∈ {1, . . . ,81}, satisfies the second condition of (2), thenGi j would be 0 on a = (a1, . . . , a81). �

Remark 24. Let S be a sudoku with preassigned data {ci }i∈L , for L ⊂ {1, . . . ,81}. Let
IS = I+ < {xi − ci }i∈L > be the ideal associated to the sudoku S. Since IS ⊂ C[x1, . . . , x81].
We have |V(IS)| < 981 <∞ and IS is a radical ideal. By Proposition 8,

|V(IS)| = dimC(
C[x1, . . . , x81]

IS
).

We want to find out when the solution is unique.

Proposition 25. The following statements are equivalent:
ALGORITHMIC MATHEMATICS AND MATHEMATICAL MODELING 9
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• (1) a = (a1, . . . , a81) is the unique solution of the sudoku S.
• (2) IS =< {x1 −a1, . . . , x81 −a81} > .
• (3) {x1 −a1, . . . , x81 −a81} is a reduced Groebner basis of IS .

Proof. See [1; Prop. 6].

(1) =⇒ (2) Since a is a solution a ∈ V(IS). Since a is the unique solution a = V(IS) because
if there would exist b ∈ V(IS), such that b , a, b would also be a solution of S which would
contradict the unicity of a.
By Theorem 6,

p
IS = I(V(IS)). Thus,

p
IS = I(a) =< {x1 − a1, . . . , x81 − a81} > . In particu-

lar, for i ∈ {1, . . . ,81}, there exists mi ∈ N such that (xi − ai )mi ∈ IS . Therefore, IS ∩ k[xi ] =
< (xi −ai )t >, for some t ∈ N. But t = 1 since the polynomials Fl (xl ) are free of squares. Thus,
IS =< {x1 −a1, . . . , x81 −a81} > .

(2) =⇒ (3) We have to see that {x1 − a1, . . . , x81 − a81} is a reduced Groebner basis. Let
G := {x1 −a1, . . . , x81 −a81}. It is easy to see that G is a Groebner basis since, for each pair (i , j ),
with i , j , the remainder of the division of S(xi − ai , x j − a j ) by G is 0. Moreover, for each

i ∈ {1, . . . ,81}, LC (xi − ai ) = 1 and no monomial of xi − ai belongs to < LT (G − {xi − ai }) >,
< LT (G − {xi − ai }) >=< {x j ,1 ≤ j ≤ 81, i , j } >. Thus, {x1 − a1, . . . , x81 − a81} is a reduced
Groebner basis of IS .

(3) =⇒ (2) Since {x1 −a1, . . . , x81 −a81} is a reduced Groebner basis of IS , by Proposition 18,
IS =< {x1 −a1, . . . , x81 −a81} > .

(2) =⇒ (1) By Proposition 23 we know that the solutions of a sudoku are the zeroes of the
ideal IS . Thus, if IS =< {x1 −a1, . . . , x81 −a81} >, then (a1, . . . , a81) is the unique solution. �

4. SAGE CODES TO SOLVE A SUDOKU

See also [1, pp. 54–56].

(1) Let us construct E , the polynomials Fi andGi j and the ideal I generated by them.

# the set E:

R = Integers(3)

E = [ ]

for j in[1, .,9] :

fork in[1, .,9] :

i = ( j −1)∗9+k

a = R( j )

if a == 0 :

a = 3

b = R(k)

i f b == 0 :

b = 3

# Pairs (i , j ) such that xi and x j belong to the same row:

for l in[k +1, .,9] :

E ·append((i , i + l −k)

10 © COMPUTER TOOLS IN EDUCATION.№3, 2018 г.
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# Pairs (i , j ) such that xi and x j belong to the same column:

for l in[ j +1, .,9] :

E ·append((i , (l −1)∗9+k))

# Pairs (i , j ) such that xi and x j belong to the same 3×3 block:

form in[a, .,3] :

forn in[1, .,3] :

if i < (( j −1)+ (3−m))∗9+k −b +n :

E ·append((i , (( j −1)+ (3−m))∗9+k −b +n)

print(E)

# Polynomials Fi :

F = [ ]

variable = [0]

P(x) = prod([(x - j)for j in [1,.,9]])

for j in[1, .,81] :

variable.append(var(‘x’+ str(j)))

printP (variable[j])

# PolynomialsGi j :

var(‘y’)

G(x,y) = (P(x) - P(y))/(x- y)

TheGij = [G(variable[a], variable[b]) for a, b in E]

(2) Now, we are going to construct the ideal IS , generated by the polynomials Fi ,
i ∈ {1, . . . ,81}, and Gi j , (i , j ) ∈ E , and by the polynomials corresponding to the preassigned
values to the sudoku. In a matrix 9×9, the values not preassigned will be written as 0.

# Polynomials corresponding to the preassigned values:

def Preassigned(matrix)

polynomial = [ ]

for i in[0, .,8] :

for j in[0, .,8] :

if matrix[i,j] ! = 0

k = i ∗9+ ( j +1)

p = variable[k] - matrix[i, j]

polynomial.append(p)

return(polynomial)

T = PolynomialRing(QQ; [‘x’ + str(j) for j in [1,.,81]])

M = matrix(QQ; matrix[i, j] for i,j in [1,.,9])

L = Preassigned(M)

TheGij = [G(variable[a]; variable[b]) for a, b in E]

ALGORITHMIC MATHEMATICS AND MATHEMATICAL MODELING 11
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I = T.ideal(L + TheGij)

show(I · g r oebner−basi s())

U = I · g r oebner−basi s()

N1=U[54:56]

N2=U[63:65]

N3=U[72:74]

N=N1+N2+N3

x=‘x’ + str(j) for j in [1,.,81]

a=’a’ + str(j) for j in [1,.,81]

def g(x-a)=a

show g(x-a) for x-a in N

Let us consider the following sudoku grid S

6 4

9 8 7

8 2 3

8 4

6 5

1 5 7

4 1 6 9

1 4

2 7 3 8

Let us calculate the Groebner basis of the ideal IS

R = PolynomialRing(QQ; [‘x’ + str(j) for j in [1,..,81]])

M = matrix(QQ; [[0, 0, 6, 0, 4, 0, 0, 0, 0], [0, 9, 0, 8, 0, 7, 0, 0, 0],

[0, 8, 2, 0, 0, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 8, 4, 0], [0, 0, 0, 0, 0, 0, 0, 6, 5]

[1, 0, 5, 0, 0, 0, 0, 0, 7], [4, 0, 0, 1, 6, 0, 0, 9, 3], [0, 0, 1, 4, 0, 0, 0, 0, 0],

[0, 2, 0, 7, 0, 3, 0, 0, 8]])

L = Preassigned(M)

TheGij = [G(variable[a]; variable[b]) for a; b in E]

I = R:ideal(L + TheGij) Once L added, the polynomials Fi are redundant.

show(I · g r oebner−basi s())

[x1 −3; x2 −1; x3 −6; x4 −2; x5 −4; x6 −5; x7 −7; x8 −8; x9 −9; x10 −5;

x11 −9; x12 −4; x13 −8; x14 −3; x15 −7; x16 −6; x17 −2; x18 −1; x19 −7;

x20 −8; x21 −2; x22 −9; x23 −1; x24 −6; x25 −3; x26 −5; x27 −4; x28 −9;

x29 −6; x30 −3; x31 −5; x32 −7; x33 −1; x34 −8; x35 −4; x36 −2; x37 −2;

x38 −7; x39 −8; x40 −3; x41 −9; x42 −4; x43 −1; x44 −6; x45 −5; x46 −1;

x47 −4; x48 −5; x49 −6; x50 −8; x51 −2; x52 −9; x53 −3; x54 −7; x55 −4;

x56 −5; x57 −7; x58 −1; x59 −6; x60 −8; x61 −2; x62 −9; x63 −3; x64 −8;

x65 −3; x66 −1; x67 −4; x68 −2; x69 −9; x70 −5; x71 −7; x72 −6;

12 © COMPUTER TOOLS IN EDUCATION.№3, 2018 г.
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x73 −6; x74 −2; x75 −9; x76 −7; x77 −5; x78 −3; x79 −4;

x80 −1; x81 −8]

The unique solution is:

(3, 1, 6, 2, 4, 5, 7, 8, 9, 5, 9, 4, 8, 3, 7, 6, 2, 1, 7, 8, 2, 9, 1, 6,

3, 5, 4, 9, 6, 3, 5, 7, 1, 8, 4, 2, 2, 7, 8, 3, 9, 4, 1, 6, 5, 1, 4, 5,

6, 8, 2, 9, 3, 7, 4, 5, 7, 1, 6, 8, 2, 9, 3, 8, 3, 1, 4, 2, 9, 5, 7, 6,

6, 2, 9, 7, 5, 3, 4, 1, 8)

Notice that the solution is unique as it is known, by Proposition 8, (b), that

|V(IS)| = dimC(
C[x1, . . . , x81]

IS
) = 1.

If we solve it using the command “Sudoku( )” of SAGE we obtain

sudoku(M)

S = Sudoku(M)

print(‘The number of solutions of this sudoku is:’)

len(list(S.dlx())) # It computes the number of solutions of this sudoku.

6 4

9 8 7

8 2 3

8 4

6 5

1 5 7

4 1 6 9 3

1 4

2 7 3 8

3 1 2 5 7 8 9

5 4 3 6 2 1

7 9 1 6 5 4

9 6 3 5 7 1 2

2 7 8 3 9 4 1

4 6 8 2 9 3

5 7 8 2

8 3 2 9 5 7 6

6 9 5 4 1

5. GENERALIZATIONS OF SUDOKU PUZZLES

Definition 26. We call a generalized sudoku an (mn)× (mn) grid, m, n ∈N, m, n ≥ 2, divided
into m ×n boxes where there are numbers between 1 and mn in some of the squares in the grid.
To solve the puzzle we have to find the remaining numbers in such a way that every row and every

column only contain the digits 1 tomn and also everym×n box only contains those digits, without
repetitions

Remark 27. • Whenm = n = 2 the generalized sudoku is called
Shidoku (see VII).

• Whenm = 2 and n = 3 the generalized sudoku is called Roku sudoku.
• Whenm = 2 and n = 4 the generalized sudoku is called Hachi sudoku.
• When m = 3 and n = 4 there is a type of generalized sudoku which uses the digits from 1
to 9 and the letters A, B and C instead of the digits 10, 11 and 12. This type is called Juuni
sudoku.

• Whenm = n = 4 there is a type of generalized sudoku which uses the digits from 1 to 9 and
the letters A, B, C, D, E, F and G instead of the digits 10, 11, 12, 13, 14, 15 and 16. This type is

called Supersudoku.
ALGORITHMIC MATHEMATICS AND MATHEMATICAL MODELING 13
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Let r = (mn)2. Let x1, . . . , xr the r squares which form the sudoku, arranged from left to right
and from top to bottom. Its solution will be (a1, . . . , ar ), where ai is the number in the square

associated to the variable xi . Let S be a generalized sudoku with preassigned data {ci }i∈L , for
L ⊂ {1, . . . ,r }. All the necessary information to solve the sudoku is contained in the algebraic set
V(I+< {xi − ci }i∈L >).

Definition 28. • (a) For 1 ≤ i ≤ r, let Fi (xi ) = ∏mn
k=1(xi − k), k ∈ {1, . . . ,mn},

i ∈ {1, . . . ,r }.
• (b) For 1 ≤ i < j ≤ r, let

Gi j (xi , x j ) = Fi (xi )−F j (x j )

xi −x j
∈Q[xi , x j ],with i , j .

Remark 29. Note that Fi (xi )−F j (x j ) is 0 inV(xi−x j ); thus (xi−x j ) is a factor of Fi (xi )−F j (x j ) for
i , j .MoreoverGi j (xi , x j ) is not divisible by (xi −x j ), since, for xi = x j , Gi j (xi , xi ) = F ′

i (xi )which
is not 0 since Fi is not constant. Also, if ai , a j are such thatGi j (ai , a j ) = 0 and Fi (ai ) = 0 = F j (a j )
we would have that ai , a j , for, otherwise, Gi j (ai , ai ) = F ′

i (ai ) , 0 because there would be a
summand of F ′

i which would not be 0 in ai ∈ {1, . . . ,mn}.

Notation 30. Let r = (mn)2. Let E = {(i , j ) ∈ T }.

(i , j ) ∈ T when 1 ≤ i < j ≤ r and the ith and jth cells belong to the same row, column orm ×n
block.

We consider the ideal I generated by the polynomials Fi , 1 ≤ i ≤ r, and Gi j , (i , j ) ∈ E . Let S be
a sudoku with preassigned data {ci }i∈L , for L ⊂ {1, . . . ,r }, r = (mn)2.

Remark 31. The ideal I+< {xi − ci }i∈L > is the ideal generated by I∪< {xi − ci }i∈L > and

V(I+< {xi − ci }i∈L >) =V(I )∩V(< {xi − ci }i∈L >)

Proposition 32. Let r = (mn)2. The following statements are equivalent:

• (1) Let L ⊂ {1, . . . ,r }. We have a = (a1, . . . , ar ) ∈ V(I+ < {xi − ci }i∈L >, where ci are certain

constants.

• (2) ai ∈ {1, . . . ,mn}, for i ∈ {1, . . . ,r }, with ai , a j , for (i , j ) ∈ E , and ai = ci , for all i ∈ L.

Proof. See Prop. 23.

(1) =⇒ (2) Let a ∈ V(I+ < {xi − ci }i∈L >). Then Fi (ai ) = 0, ∀i ∈ {1, . . . ,r } and ai = c j , for all
i ∈ L. Let us prove that ai , a j , for (i , j ) ∈ E . Let us assume that there is a pair (k, l ) ∈ E such that
ak = b = al . Since Fk (xk ) = Fl (xl )+ (xk − xl )Gkl (xk , xl ), we obtain Fk (xk ) = (xk −b)Gkl (xk ,b). If
Gkl (b,b) = 0,we would obtain that b is a zero of Fk of multiplicity at least 2 which is impossible.

(2) =⇒ (1) If for all i ∈ {1, . . . ,r } ai satisfies the first condition of (2) and also ai = ci , for all
i ∈ L, then every Fi , i ∈ {1, . . . ,r }, would be 0 on them and xi − ci = 0, for all i ∈ L. If also ai ,
i ∈ {1, . . . ,r }, satisfies the second condition of (2), thenGi j would be 0 on a = (a1, . . . , ar ). �

Remark 33. Let S be a sudoku with preassigned data {ci }i∈L , for L ⊂ {1, . . . ,r }. Let
IS = I+ < {xi − ci }i∈L > be the ideal associated to the sudoku S. Since IS ⊂ C[x1, . . . , xr ]. We
have |V(IS)| < (mn)r <∞ and IS is a radical ideal. By Proposition 8,

|V(IS)| = dimC(
C[x1, . . . , xr ]

IS
).

We want to find out when the solution is unique.
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Proposition 34. Let r = (mn)2. The following statements are equivalent:

• (1) a = (a1, . . . , ar ) is the unique solution of the sudoku S.
• (2) IS =< {x1 −a1, . . . , xr −ar } >.
• (3) {x1 −a1, . . . , xr −ar } is a reduced Groebner basis of IS .

Proof. See Prop. 25.

(1) =⇒ (2) Since a is a solution a ∈ V(IS). Since a is the unique solution a = V(IS) because
if there would exist b ∈ V(IS), such that b , a, b would also be a solution of S which would
contradict the unicity of a.
By Theorem 6,

p
IS = I(V(IS)). Thus,

p
IS = I(a) =< {x1 − a1, . . . , xr − ar } >. In particular,

for i ∈ {1, . . . ,mn}, there exists mi ∈ N such that (xi − ai )mi ∈ IS . Therefore, IS ∩ k[xi ] =
< (xi −ai )t >, for some t ∈ N. But t = 1 since the polynomials Fl (xl ) are free of squares. Thus,
IS =< {x1 −a1, . . . , xr −ar } > .

(2) =⇒ (3) We have to see that {x1 − a1, . . . , xr − ar } is a reduced Groebner basis. Let
G := {x1 − a1, . . . , xr − ar }. It is easy to see that G is a Groebner basis since, for each pair (i , j ),
with i , j , the remainder of the division of S(xi − ai , x j − a j ) by G is 0. Moreover, for each

i ∈ {1, . . . ,r }, LC (xi − ai ) = 1 and no monomial of xi − ai belongs to < LT (G − {xi − ai }) >,
< LT (G − {xi −ai }) >=< {x j ,1 ≤ j ≤ r, i , j } >. Thus, {x1 −a1, . . . , xr −ar } is a reduced Groebner
basis of IS .

(3) =⇒ (2) Since {x1 − a1, . . . , xr − ar } is a reduced Groebner basis of IS , by Proposition 18,
IS =< {x1 −a1, . . . , xr −ar } > .

(2) =⇒ (1) By Proposition 32 we know that the solutions of a sudoku are the zeroes of the
ideal IS . Thus, if IS =< {x1 −a1, . . . , xr −ar } >, then (a1, . . . , ar ) is the unique solution. �

6. SAGE CODES TO SOLVE A GENERALIZED SUDOKU

Let S be a generalized sudoku which is an (mn)× (mn) grid,m, n ∈N, m, n ≥ 2, m ≤ n.

(1) Let us construct E , the polynomials Fi andGi j and the ideal I generated by them.

# the set E:

R1 = Integers(m)

t = mn

E = [ ]

for j in[1, ., t ] :

fork in[1, ., t ] :

i = ( j −1)∗ t +k

a = R1( j )

if a == 0 :

a = m

R2 = Integers(n)

b = R2(k)

i f b == 0 :

b = m
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# Pairs (i , j ) such that xi and x j belong to the same row:

for l in[k +1, ., t ] :

E ·append((i , i + l −k)

# Pairs (i , j ) such that xi and x j belong to the same column:

for l in[ j +1, ., t ] :

E ·append((i , (l −1)∗ t +k))

# Pairs (i , j ) such that xi and x j belong to the samem ×n block:

foru in[a, .,m] :

forw in[1, .,m] :

if i < (( j −1)+ (m −u))∗ t +k −b +w :

E ·append((i , (( j −1)+ (m −u))∗ t +k −b +w)

print(E)

# Polynomials Fi :

r = t ∗ t

F = [ ]

variable = [0]

P(x) = prod([(x - j)for j in [1,.,t]])

for j in[1, .,r ] :

variable.append(var(‘x’+ str(j)))

printP (variable[j])

# PolynomialsGi j :

var(‘y’)

G(x,y) = (P(x) - P(y))/(x- y)

TheGij = [G(variable[a], variable[b]) for a, b in E]

(2) Now, we are going to construct the ideal IS , generated by the polynomials Fi ,
i ∈ {1, . . . ,mn}, and Gi j , (i , j ) ∈ E , and by the polynomials corresponding to the preassigned
values to the sudoku. In a matrix (mn)× (mn), the values not preassigned will be written as 0.

# Polynomials corresponding to the preassigned values:

def Preassigned(matrix)

polynomial = [ ]

t = mn

r = t ∗ t

for i in[0, ., t −1] :

for j in[0, ., t −1] :

if matrix[i,j] ! = 0

k = i ∗ t + ( j +1)
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p = variable[k] - matrix[i, j]

polynomial.append(p)

return(polynomial)

T = PolynomialRing(QQ; [‘x’ + str(j) for j in [1,.,r]])

M = matrix(QQ; matrix[i, j] for i,j in [1,.,t])

L = Preassigned(M)

TheGij = [G(variable[a]; variable[b]) for a, b in E]

I = T.ideal(L + TheGij)

show(I · g r oebner−basi s())

7. OTHER TYPES OF SUDOKU PUZZLES

Shidoku: It is a 4×4 grid divided into four 2×2 boxes where there are numbers between 1
and 4 in some of the squares in the grid (for example the bolded black below). To solve the puzzle

we have to find the remaining numbers in such a way that every row and every column only

contain the digits 1 to 4 and also every 2×2 box only contains those digits, without repetitions
(for example the black below).

Let x1, . . . , x16 the 16 squares which form the shidoku S1, arranged from left to right and from

top to bottom. Its solution will be (a1, . . . , a16), where ai is the number in the square associated

to the variable xi , with preassigned data {ci }i∈L1 , for L1 ⊂ {1, . . . ,16}.

Remark 35. Let S be a shidoku with preassigned data {ci }i∈L , for L ⊂ {1, . . . ,16}. Let IS = I+
< {xi −ci }i∈L > be the ideal associated to the shidoku S, where I is the ideal generated by the poly-
nomials Fi , 1 ≤ i ≤ 16, and Gi j , (i , j ) ∈ E , defined in a similar way to the ones in Definition 19 and
Notation 21. E = {(i , j ) : f or 1 ≤ i < j ≤ 16 the ith and jth cells belong to the same row, column or
2×2 block}.

Proposition 36. The following statements are equivalent:
• (1) a = (a1, . . . , a16) is the unique solution of the shidoku S.
• (2) IS =< {x1 −a1, . . . , x16 −a16}. >
• (3) {x1 −a1, . . . , x16 −a16} is a reduced Groebner basis of IS .

Proof. Similar to the one of Prop. 25. �

Several sudokus sharing 3×3 blocks
Let us denote the sudokus by S j , 1 ≤ j ≤ m, arranged in such a way that some of them share

a 3× 3 block. Let S denote such a configuration with associated ideal IS . Let IS j be the ideal

associated to the sudoku S j , 1 ≤ j ≤ m, 1 ≤ ai j ≤ 9. IS j ⊂ k[{xi j }81
i=1]. For each j , 1 ≤ j ≤ m,
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let {xi j −ai j }81
i=1, be a reduced Groebner basis of the ideal IS j . Then ∪m

j=1({xi j −ai j }81
i=1), is a

reduced Groebner basis of the ideal
∑m

j=1 IS j ⊂ k[{{xi j }81
i=1}

m
j=1

], by Lemma 15. Notice that some
of the xi j are equal to some xkl and that some of the ai j are equal to some akl since some 3×3
blocks may be shared. Let us assume that, in S, we have g distinct xi j that we shall denote by

y1, . . . , yg and where bi is the digit in {1, . . . ,9} associated to the variable yi .

Proposition 37. The following statements are equivalent:
• (1) b = (b1, . . . ,bg ) is the unique solution of S.
• (2) IS =< {y1 −b1, . . . , yg −bg } > .
• (3) {y1 −b1, . . . , yg −b16} is a reduced Groebner basis of IS .

Proof. Similar to the one of Prop. 25. �

Three sudokus joined in diagonal
We have three sudokus Si , 1 ≤ i ≤ 3, arranged in diagonal in such a way that Si and Si+1,

1 ≤ i ≤ 2, share a corner 3×3 block.
Let x1, . . . , x81 the 81 squares which form the sudoku S1, arranged from left to right and from

top to bottom. Its solution will be (a1, . . . , a81), where ai is the number in the square associated

to the variable xi , with preassigned data {ci }i∈L1 , for L1 ⊂ {1, . . . ,81}. Similarly, let y1, . . . , y81 the

81 squares which form the sudoku S2, arranged from left to right and from top to bottom. Its

solution will be (b1, . . . ,b81), where bi is the number in the square associated to the variable yi ,
with preassigned data {di }i∈L2 , for L2 ⊂ {1, . . . ,81}. S1 and S2 share a 3×3 block; thus, x54+l = y6+l ,
l = 9m + s, 1 ≤ s ≤ 3, 0 ≤ m ≤ 2.
Let z1, . . . , z81 the 81 squares which form the sudoku S3, arranged from left to right and from

top to bottom. Its solution will be (e1, . . . ,e81), where ei is the number in the square associated to

the variable zi , with preassigned data {gi }i∈L3 , for L3 ⊂ {1, . . . ,81}. S3 and S2 share a 3×3 block;
thus, y54+l = z6+l , l = 9m + s, 1 ≤ s ≤ 3, 0 ≤ m ≤ 2.
We consider the polynomial ring R = C[x1, . . . , x81, y1, . . . , y81, z1, . . . , z81], with x54+l = y6+l ,

y54+l = z6+l , l = 9m + s, 1 ≤ s ≤ 3, 0 ≤ m ≤ 2. Let R1 = C[x1, . . . , x81], R2 = C[y1, . . . , y81],
R3 =C[z1, . . . , z81] be subrings of R.
Let ISi be the ideals associated to the sudoku Si , 1 ≤ i ≤ 3; ISi ⊂ Ri , 1 ≤ i ≤ 3.

Remark 38. The unique solution of the three sudokus is given by ∩3
i=1V(ISi ) = V(

∑3
i=1 ISi ).

If each one of the sudokus has unique solution, {xi −ai }81
i=1, {yi −bi }81

i=1, {zi −ei }81
i=1,

are, respectively, reduced Groebner basis of the ideals ISi , 1 ≤ i ≤ 3, then, by Lemma 15,
∪3

j=1({xi −ai , yi −bi , zi −ei }81
i=1), ai , bi , ei ∈ {1, . . . ,9}, 1 ≤ i ≤ 81, is a reduced Groebner basis of

the ideal
∑3

i=1 ISi ⊂ k[{xi , yi , zi }81
i=1], where x(54+l ) = y(6+l ), a(54+l ) = b(6+l ), and y(54+l ) = z(6+l ),

b(54+l ) = e(6+l ), for l = 9m + s, 1 ≤ s ≤ 3, 0 ≤ m ≤ 2; so it is the unique solution for the three of
them, by Proposition 37.

It can be generalized to several sudokus Si , 1 ≤ i ≤ k, arranged in diagonal in such a way that
Si and Si+1, 1 ≤ i ≤ k −1, share a corner 3×3 block.

The preassigned data {ci }i∈L1 , {di }i∈L2 and {gi }i∈L3 are written in black in the example below

(Figure 1).

Samurai Sudoku: It is composed of five sudokus joined in the shape of X. There is a central
sudoku with four sudokus at the edges. Each shares a 3×3 block with the central sudoku.
Let us denote the five sudokus by S j , 1 ≤ j ≤ 5, arranged in such a way that S3 is the sudoku

at the center sharing a 3×3 block with S j , 1 ≤ j ≤ 4, j , 3, the other four sudokus located at the
corners of the central one.
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4 2 8 6

2 7 5 4

3 4 7 2

4 1 3 7 9 5

3 9 8

7 1 4 6

9 3 6 2 8

8 7 2

7 9 5 3

1 5 3 7 9

6 1 9 3 8

8 9 6 5 1

2 8 6

6 5 7 2 4 1

8 9 5 2 3

4 1 5 7

5 6 1 3 9 4

2 8 4 1 6

8 7 9 3

9 7 4 2 3

1 5 6 7

7 8 9 1 6 5

5 8 7 9

2 9 6 5 1 7

2 6 1 4 8

2 3 1 7 6

1 5 6 9

6 2 1 5 4

8 5 6 1

3 4 9 2 8

3 2 4

6 1 4 3 2

4 3 8

3 7 9 5

5 9 8 4

4 7 8 2 3

1 5 2 6

6 7 3 4

5 9 8 1

4 3 8 9

8 9 7

3 7 5 1

7 3 2

2 1 6

9 6 8 7 5

4 8 7 9 3

2 1 5 9 8

3 2 6 4 7

7 1 2 6 5

5 2 4 1 6 3

6 9 8 4 2

7 1 4 6 5 9 8

8 5 9 7 3 4

3 4 2 1

Figure 1

Remark 39. The unique solution of the five sudokus is given by ∩5
j=1V(IS j ) =V(

∑5
i=1 IS j ). If each

one of the sudokus has unique solution, for each j , 1 ≤ j ≤ 5, let {xi j −ai j }81
i=1, be a reduced Groeb-

ner basis of the ideal I j ⊂ k[{xi j }81
i=1], then, by Lemma 15, ∪5

j=1({xi j −ai j }81
i=1), ai j ∈ {1, . . . ,9},

1 ≤ i ≤ 81, 1 ≤ j ≤ 5, is a reduced Groebner basis of the ideal
∑5

j=1 I j ⊂ k[{{xi j }81
i=1}

5
j=1

], where

x(54+l )2 = x(6+l )3 and x(54+l )3 = x(6+l )5 and also x(54+t )1 = xl3, x(54+t )3 = xl4, for l = 9m + s,
1 ≤ s ≤ 3, t = 9m + v, 7 ≤ v ≤ 9, 0 ≤ m ≤ 2; thus it is the unique solution for the five of them,
by Proposition 37.

The preassigned data are written in black in the example below (Figure 2).

Sohei sudoku (Figure 3)
It is composed of four sudokus forming a cross + arranged in such a way that each sudoku

shares a 3×3 block with each one of the two adjacent ones.
Let us denote the four sudokus by S j , 1 ≤ j ≤ 4, arranged in such a way that S1 shares a 3×3

block with S2 and S4, S2 shares a 3×3 blockwith S3 and S1, S3 shares a 3×3 blockwith S2 and S4.

Remark 40. The unique solution of the four sudokus is given by ∩4
j=1V(IS j ) = V(

∑4
i=1 IS j ). If

each one of the sudokus has unique solution, for each j , 1 ≤ j ≤ 4, let {xi j −ai j }81
i=1, be a re-

duced Groebner basis of the ideal I j ⊂ k[{xi j }81
i=1], then, by Lemma 15, ∪4

j=1({xi j −ai j }81
i=1), ai j ∈

{1, . . . ,9}, 1 ≤ i ≤ 81, 1 ≤ j ≤ 4, is a reduced Groebner basis of the ideal
∑4

j=1 I j ⊂ k[{{xi j }81
i=1}

4
j=1

],

where x(54+l )1 = x(6+l )4 and x(54+l )2 = x(6+l )3, for l = 9m + s, 1 ≤ s ≤ 3, and also x(54+t )1 = xl 2,
x(54+t )4 = xl3, for t = 9m + v, 7 ≤ v ≤ 9, 0 ≤ m ≤ 2; thus it is the unique solution for the four of
them, by Proposition 37.
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Figure 2

Figure 3
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РЕШЕНИЕ СУДОКУ С ПОМОЩЬЮ БАЗИСОВ ГРЕБНЕРА

Гонзалез-Доррего М. Р.

Автономный университет Мадрида,Мадрид, Испания

Аннотация

Мы изучаем решение судоку и обобщенного судоку, используя технику базисов Грёбнера.

Пусть x1, . . . , x81 переменные, связанные с 81 квадратами, которые образует головоломку су-
доку и линейно упорядочены сначала по строкам, затем по столбцам. Решение судоку есть

набор чисел (a1, . . . , a81), где ai число в квадрате, ассоциированном с переменной xi .
Пусть также S — судоку с предварительно заполненными данными {ci }i∈L для

L ⊂ {1, . . . ,81}. Вся необходимая информация для решения такого судоку содержится в

алгебраическом множествеV(I+< {xi −ci }i∈L >). Мы используем технику базисов Грёбнера

для поиска такого решения и приводим соответсвующий код в системе компьютерной

алгебры SAGE для программы, решающей эту задачу.

Ключевые слова: судоку, обобщённое судоку, базис Грёбнера, алгебраическое многообра-

зие.
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